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The unsteady hydromagnetic flow of electrically conducting liquids whose Prandtl num-
bers are different from unity has been considered when the flow takes place near an infi-
nite vertical flat plate subject to uniform heat flux and accelerated motion. A unified
exact solution has been derived for the boundary layer velocity and skin friction for
the cases of magnetic field being fixed relative to the fluid or to the vertical plate. The
solution has been presented in real forms for fluids whose Prandtl numbers are greater
than or less than unity. The response of the boundary layer fluid velocity to the vari-
ations in magnetic and buoyancy forces has been discussed for two sample fluids corre-
sponding to the different Prandtl number categories. The influence of these forces on the
skin friction has also been shown.

Keywords: Hydromagnetic flow; Heat flux; Buoyancy force; Free convection; Skin friction

1. INTRODUCTION

In the study of unsteady boundary layer flows of fluids, one of the

most important aspects of the study concerns the investigation of

the response of the boundary layer to externally applied forces.
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Among the external forces, the forces of gravity and magnetic field are

known to play dominant roles in flow control and design of equip-

ments. Hydromagnetic boundary layers are encountered in various

industrial and technological applications employing liquid metal and

plasma flows subject to transverse magnetic fields [1,2]. Fluid flow

controls through external magnetic forces are also used in aerospace

industry, chemical engineering, nuclear reactors and geothermal engi-

neering, among others. Moreover, when the fluid flow is generated by

moving boundaries, the problems are of great research interest because

of their wide industrial applications.

As is known, when the flow field comprises an electrically conduct-

ing fluid under the influence of an externally applied magnetic field,

the combined effects of the viscous, buoyancy and magnetic forces

render the system of Navier-Stokes equations highly non-linear and

coupled. For flows near flat plates, these equations can be simplified

considerably. However, the degree of difficulty of solution still

depends on the physical situation and the assumptions inherent to

the problem. Whereas there have been several studies incorporating

the non-linear features of the flow phenomena both in the non-mag-

netic and magnetic cases [3–5], major efforts in literature have also

been directed to obtaining analytical solutions of the linear problems.

Analytical solutions, though mostly representing idealized situations,

are also important partly because of their wider applicability in under-

standing the basic physics of the problem, and partly because of their

possible applications in industrial and technological fields. Of the

hydromagnetic fluid flow models amenable to exact analytical treat-

ments, the well-known Stokes and Rayleigh problems in which an infi-

nite flat plate bounding a stationary viscous fluid is moved in its

own plane have, for instance, helped in identifying the basic inter-

action features between the magnetic and fluid dynamical forces. In

these problems it can be seen that the quadratic convection terms in

the governing equations drop out, and the equations can be reduced

to linear systems. However, it must be admitted that the availability

of closed form solution for the Stokes problem is still dependent on

the nature of the initial and boundary conditions. Further complica-

tions arise if one considers the real fluid properties also. For instance,

Gebhart et al. [6] have given a detailed account of the implications

of different types of boundary conditions for convection flows.
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The solutions of hydromagnetic free convection flows near plates

of infinite extent have been discussed by several authors (see, e.g.

[7–12]) under different physical conditions.

As regards the works of direct relevance to the present problem in

which the fluid flow is generated by an infinite plate in accelerated

motion, Raptis and Singh [10] have obtained solutions for the magneto-

hydrodynamic free convection flow past an accelerated vertical plate,

but their analysis did not consider the heat flux at the boundary. This

problem was further extended recently to include the effect of heat flux

on the boundary [12], but this work was rather restricted in that the

magnetic field was assumed to be fixed relative to the fluid only,

and furthermore, the results were presented only for fluids of

Prandtl number, P, greater than unity because of the difficulty in

obtaining real solutions in exact form to the case when P<1.

However, it is of practical interest to understand the relative influence

of magnetic field on fluid velocity based on its mode of application. In

this respect, the coupling effects of magnetic and buoyancy forces

when the magnetic field is applied relative to the moving boundary

has not yet been investigated. This problem has thus been taken up

in this paper. In fact, in order to make the solution self-contained,

and for comparison purposes, an exact solution has been obtained,

using Laplace transforms, in a unified form (see Eq. (11) later) encom-

passing both the cases of magnetic field being fixed to the fluid or to

the boundary. It may be remarked that the solution so obtained is

more general than the ones existing in literature as it exhibits the com-

bined influence of buoyancy effects, heat flux and the magnetic field

including its mode of application. As the heat flux effects entail consid-

eration of derivative boundary conditions, exact solutions of such

problems are more difficult to obtain when the velocity field gets

coupled with the temperature field. It is also worth mentioning here

that the solution obtained in this paper is not applicable for fluids

of Prandtl number equal to unity. This case has been considered in

detail in [13]. Accordingly, we consider here incompressible fluids of

Prandtl numbers different from unity. Our objective in this work

thus is threefold: (i) obtain a unified solution to the boundary layer

velocity of the free convection flow corresponding to the cases of an

external magnetic field being applied fixed relative to the moving

fluid or to the moving boundary when the fluid flow is induced by
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an infinite vertical plate subject to uniform heat flux and accelerated

motion; (ii) present the solution so obtained in real forms for the

cases of P<1 and P>1; and (iii) use the real solutions to present

some case studies involving liquids of different Prandtl numbers in

order to bring out the influence of magnetic and heat flux parameters

on their boundary layer motion.

In Section 2, the boundary layer equations for the fluid flow have

been presented. These have been solved in Section 3. The solution

has been shown to have two different real forms according as the

Prandtl number of the fluid is greater than or less than unity. An

expression for the skin friction has also been derived. The effects of

the magnetic field and the buoyancy force parameters on the boundary

layer velocity have been discussed in Section 4 for two sample liquids:

mercury and water whose Prandtl numbers (at 20�C) have been taken

to be 0.044 and 7.0, respectively.

2. GOVERNING EQUATIONS

As mentioned in the previous section, we consider the unsteady two-

dimensional flow of an electrically conducting incompressible fluid

of Prandtl number different from unity past an infinite vertical flat

plate which is assumed to be non-conducting. With respect to an arbi-

trarily chosen origin O on this plate, the axis Ox0 is taken along the

wall in the upward direction and the axis Oy0 is taken perpendicular

to it into the fluid. For times t0� 0, the plate and the fluid medium

are at rest and at the constant temperature T 0
1. At time t0>0, the

plate is set into motion with a velocity proportional to t0n, and simul-

taneously, heat is also supplied to the plate at a constant rate. The flow

takes place under the influence of an external magnetic field of con-

stant strength (0,By, 0) applied in the y0 direction. Two different

flow situations will be considered here with respect to the magnetic

field. The first corresponds to the case when the magnetic lines of

force are fixed relative to the fluid, and the other when these are

fixed relative to the boundary. These two cases will, however, be com-

bined into a single momentum equation so as to obtain a unified

solution. As is common in Stokes problems, we assume that the effects

of the convective and pressure gradient terms in the momentum and
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energy equations are negligible. The density of the liquid is assumed to

be constant; however, in the case of free convection flow, it is consid-

ered variable in forming the buoyancy force. We also assume that the

electric and polarization effects in the fluid flow can be neglected. For

many fluids used in the laboratory or industrial applications, the elec-

trical conductivity is usually small. This implies that the magnetic

Reynolds number is very small so that the induced magnetic field pro-

duced by the motion of the electrically conducting fluid is negligible in

comparison with the applied one. Moreover, as a result of the bound-

ary layer approximations, the physical variables become functions of

the time variable t0 and the space variable y0 only. Under these assump-

tions, the boundary layer momentum equation can be written in the

form [14]

@u0

@t0
¼ �

@ 2u0

@y0 2
þ g�ðT 0 � T 0

1Þ �
�B 2

y

�
ðu0 � KUt0nÞ ð1Þ

where u0 is the velocity in the x0 direction, T 0 the temperature of the

fluid, g the acceleration due to gravity, � the volumetric coefficient

of thermal expansion, � the kinematic viscosity, � the density, U a

constant and

K ¼
0, if By is fixed relative to the fluid
1, if By is fixed relative to the plate:

�

The boundary layer energy equation, neglecting viscous dissipation

and Ohmic heating, is

@T 0

@t0
¼

k

�cp

@ 2T 0

@y0 2
ð2Þ

where k is the thermal conductivity and cp is the specific heat of the

fluid at constant pressure.

The initial and boundary conditions relevant to the fluid flow are

u0 ¼ 0, T 0 ¼ 0, for y0 
 0 and t0 � 0

u0 ¼ Ut0n,
@T 0

@y0
¼ �

q

k
at y0 ¼ 0 for t0 > 0

u0 ! 0, T 0 ! T 0
1 as y0 ! 1 for t0 > 0

ð3Þ
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where q is the heat flux per unit area at the plate. The flow described

by Eqs. (1)–(3) is very general in the sense that it corresponds to a

power law velocity of the vertical plate. The features of the motion

will therefore depend on the value of n, as it will have significant

effects on the search for the exact solution as well as on the dynamics

of the flow. In this paper, we shall derive exact solution for the fluid

velocity in the case of uniformly accelerated motion of the plate

which corresponds to n¼ 1.

3. BOUNDARY LAYER VELOCITY

In order to write the governing equations in dimensionless form, it is

necessary to introduce appropriate scales of length, time, velocity and

temperature. Using a characteristic length scale L¼ (�2/U)1/3, we write

y ¼ y0=L, t ¼ �t0=L 2, u ¼ Lu0=�, T ¼ kðT 0 � T 0
1Þ=ðqLÞ

P ¼ ��cP=k, G ¼ qg�L4= k� 2
� �

, m ¼ �L 2B 2
y =ð��Þ

ð4Þ

In the above, the dimensionless parameters P, G, and m denote the

Prandtl number, Grashof number and the square of Hartmann

number, respectively.

Using Eq. (4), Eqs. (1) and (2) can be expressed in the dimensionless

forms

@u

@t
¼

@ 2u

@y 2
�mðu� KtÞ þ GT ð5Þ

@T

@t
¼

1

P

@ 2T

@y 2
ð6Þ

The initial and boundary conditions become

u ¼ 0, T ¼ 0 for y 
 0 and t � 0

u ¼ t,
@T

@y
¼ �1 at y ¼ 0 for t > 0

u ! 0, T ! 0 as y ! 1 for t > 0

ð7Þ
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Under the assumptions of the flow problem, we observe that the

energy Eq. (6) is uncoupled from the momentum Eq. (5). We can there-

fore solve for the temperature variable T( y, t) whereupon u( y, t) can

be expressed in terms of T( y, t). As stated before, the governing partial

differential Eqs. (5) and (6) with the initial and boundary conditions

(7) are amenable to an exact analytical treatment using Laplace trans-

forms. Taking Laplace transforms of Eqs. (5) and (6) will result in a set

of (ordinary) differential equations for the transformed functions in

the independent variable y. On solving, the transformed temperature

variable �TTð y, sÞ can be obtained as

�TTð y, sÞ ¼
expð�y

ffiffiffiffiffiffi
Ps

p
Þffiffiffiffi

P
p

s3=2
ð8Þ

which, on inversion [15], yields

Tð y, tÞ ¼ 2

ffiffiffiffiffiffiffi
t

	P

r
exp �

Py 2

4t

� �
� y erfc

ffiffiffiffi
P

p
y

2
ffiffi
t

p

� �
ð9Þ

where erfc(x) is the complementary error function defined by

erfcðxÞ ¼ 1� erfðxÞ, erfðxÞ ¼
2ffiffiffi
	

p

Z x

0

expð�
 2Þ d


To obtain the solution for the velocity variable, we solve the trans-

formed momentum equation and write the velocity in the ( y, s)-

plane in the form

�uuð y, sÞ ¼ �uu1ð y, sÞ þ �uu2ð y, sÞ þ �uu3ð y, sÞ ð10Þ

where

�uu1ð y, sÞ ¼
Km

ðsþmÞs 2
þ
sþ ð1� KÞm

ðsþmÞs 2
expð�y

ffiffiffiffiffiffiffiffiffiffiffiffi
sþm

p
Þ

�uu2ð y, sÞ ¼ �
a expð�y

ffiffiffiffiffiffiffiffiffiffiffiffi
sþm

p
Þ

ðsþ bÞs3=2
, �uu3ð y, sÞ ¼

a expð�y
ffiffiffiffiffiffi
Ps

p
Þ

ðsþ bÞs3=2

a ¼
G

ð1� PÞ
ffiffiffiffi
P

p , b ¼
m

1� P
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The solution for the velocity variable in the physical ( y, t)-plane can

be obtained by direct inversion for �uu1ð Þ and using convolution forð

�uu2 and �uu3Þ [15,16]. After detailed simplifications, it can be shown

that u( y, t) can be expressed in the form

uð y, tÞ ¼ u1ð y, tÞ þ u2ð y, tÞ þ u3ð y, tÞ þ u4ð y, tÞ ð11Þ

where

u1ð y, tÞ ¼
K

m
mt� 1þ ’1ð y, tÞ þ ’2ð y, tÞ þ expð�mtÞ erf

y

2
ffiffi
t

p

� �	 


u2ð y, tÞ ¼ ð1� KÞ t�
y

2
ffiffiffiffi
m

p

� �
’1ð y, tÞ þ tþ

y

2
ffiffiffiffi
m

p

� �
’2ð y, tÞ

	 


u3ð y, tÞ ¼ �
2affiffiffi
	

p

Z t

0

½’3ð y, xÞ þ ’4ð y, xÞ�
ffiffiffiffiffiffiffiffiffiffiffi
t� x

p
dx

u4ð y, tÞ ¼
2affiffiffi
	

p

Z t

0

½’5ð y, xÞ þ ’6ð y, xÞ�
ffiffiffiffiffiffiffiffiffiffiffi
t� x

p
dx

’1,2ð y, tÞ ¼
1

2
expð� y

ffiffiffiffi
m

p
Þ erfc

y

2
ffiffi
t

p �
ffiffiffiffiffiffi
mt

p
� �

’3,4ð y, tÞ ¼
1

2
expð�bt� iy

ffiffiffiffiffiffi
bP

p
Þ erfc

y

2
ffiffi
t

p � i
ffiffiffiffiffiffiffiffi
bPt

p
� �

’5,6ð y, tÞ ¼
1

2
expð�bt� iy

ffiffiffiffiffiffi
bP

p
Þ erfc

y
ffiffiffiffi
P

p

2
ffiffi
t

p � i
ffiffiffiffiffi
bt

p
� �

In the above definitions of ’i, j ( y, t), (i¼ 1, 3, 5; j¼ 2, 4, 6), the upper

sign goes with i and the lower sign with j.

We note that the solution for u( y, t) given by Eq. (11) is not valid

when the Prandtl number is equal to unity since both a and b are unde-

fined in this case. The solution distinguishes clearly the cases of mag-

netic field fixed relative to the fluid (K¼ 0) or fixed relative to the

boundary (K¼ 1). It may be noted that in the absence of buoyancy,

(a¼ 0), Eq. (11) will correspond to the results in [10] and will also

follow as a special case of a related rotating magnetohydrodynamic

flow study in [17]. In the absence of magnetic field, (b¼ 0), the solution

(11) does not reduce directly to the required solution because of divi-

sion by zero. Putting m¼ 0 in the momentum Eq. (5), and solving

using Laplace transforms, it can be shown that the velocity variable
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for the non-magnetic case can be expressed as

uð y, tÞ ¼
ay3

6
þ
y 2

2
þ aytþ t

� �
erfc

y

2
ffiffi
t

p

� �

�
ffiffiffiffi
P

p Pay3

6
þ ayt

� �
erfc

ffiffiffiffi
P

p
y

2
ffiffi
t

p

� �

�

ffiffi
t

p

3
ffiffiffi
	

p ðay 2 þ 3yþ 4atÞ exp �
y 2

4t

� �

�
a

ffiffi
t

p

3
ffiffiffi
	

p ðPy 2 þ 4tÞ exp �
Py 2

4t

� �
ð12Þ

The above solution agrees with a special case of an earlier work on mass

transfer and heat flux effects [18] at an accelerated vertical plate. In the

special case of the magnetic field fixed relative to the fluid, Eq. (11) will

reduce to the results in [12], although the case P<1 was not discussed

therein because of the computational difficulties. However, the study of

the class of fluid flows belonging to this category of Prandtl numbers is

of importance in several applications. We shall therefore present here

explicit real expressions for the boundary layer velocity for all values

of Prandtl number except unity. We observe that the analytical solution

(11) will appear in different forms depending on whether the Prandtl

number is greater than or less than unity since b>0 when P<1 and

b<0 when P>1. In particular, the exponential and the complementary

error functions in Eq. (11) will have real arguments when P>1 and

complex arguments when P<1. Thus the solution as appearing in

Eq. (11) is the real form of the velocity for fluids of Prandtl number

greater than unity. When P<1, it is necessary to express u( y, t) in

real form for computational purposes. This in turn necessitates sepa-

rating erfc(xþ iy) into real and imaginary parts. To this end, for

(x, y) in the first quadrant, we write [19]

erfcðxþ iyÞ ¼ f ðx, yÞ þ ihðx, yÞ ð13Þ

where

f ðx, yÞ ¼
X1
n¼0

�
ðxyÞ2ngnðxÞ cos 2xy� ðnþ 1ÞðxyÞ2nþ1gnþ1ðxÞ sin 2xy
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hðx, yÞ ¼ �
X1
n¼0

�
ðxyÞ2ngnðxÞ sin 2xyþ ðnþ 1ÞðxyÞ2nþ1gnþ1ðxÞ cos 2xy




gnþ1ðxÞ ¼
2

2nþ 1

expð�x 2Þffiffiffi
	

p
ðnþ 1Þ! x2nþ1

�
gnðxÞ

nþ 1

	 

g0ðxÞ ¼ erfcðxÞ

Alternatively, we may also use the approximation for erfc(xþ iy) as

given in [15] with the corresponding definitions of the functions

f (x, y) and h(x, y). However, this will yield only approximate real

solutions.

In Eq. (11), we note that only u3( y, t) and u4( y, t) have complex

arguments when P<1, but u1(y, t) and u2(y, t) do not change with P.

Accordingly, using Eq. (13), we may express the real forms of

u3( y, t) and u4( y, t) as

u3,4ð y, tÞ ¼ �
2affiffiffi
	

p

Z t

0

½ f3, 4ðx, yÞ � h3,4ðx, yÞ� expð�bxÞ
ffiffiffiffiffiffiffiffiffiffiffi
t� x

p
dx ð14Þ

where the first subscript goes with the upper sign, the second with the

lower sign, and

f3ðx, yÞ ¼ f
y

2
ffiffiffi
x

p ,
ffiffiffiffiffiffiffiffiffi
bPx

p
� �

cosð y
ffiffiffiffiffiffi
bP

p
Þ

h3ðx, yÞ ¼ h
y

2
ffiffiffi
x

p ,
ffiffiffiffiffiffiffiffiffi
bPx

p
� �

sinð y
ffiffiffiffiffiffi
bP

p
Þ

f4ðx, yÞ ¼ f
y

ffiffiffiffi
P

p

2
ffiffiffi
x

p ,
ffiffiffiffiffiffi
bx

p
� �

cosð y
ffiffiffiffiffiffi
bP

p
Þ

h4ðx, yÞ ¼ h
y

ffiffiffiffi
P

p

2
ffiffiffi
x

p ,
ffiffiffiffiffiffi
bx

p
� �

sinð y
ffiffiffiffiffiffi
bP

p
Þ

Eq. (14) will be used in Eq. (11) for evaluating the convolution

integrals when P<1.

Skin Friction

In order to evaluate the shear stress at the boundary, we consider the

skin friction � ð¼ �@u=@yjy¼0Þ. On differentiating Eq. (11) with respect
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to y, the skin friction can be derived in the form

�ðtÞ ¼ �1ðtÞ þ �2ðtÞ þ �3ðtÞ ð15Þ

where

�1ðtÞ ¼
Kffiffiffiffi
m

p ð1� erfc
ffiffiffiffiffiffi
mt

p
Þ

�2ðtÞ ¼ ð1� KÞ
1þ 2mt

2
ffiffiffiffi
m

p

� �
ð1� erfc

ffiffiffiffiffiffi
mt

p
Þ þ

ffiffiffi
t

	

r
expð�mtÞ

" #

�3ðtÞ ¼
2affiffiffi
	

p

Z t

0

ffiffiffiffiffiffiffiffiffiffiffi
t� x

p

ðxÞ dx


ðxÞ ¼
1ffiffiffiffiffiffi
	x

p
ffiffiffiffi
P

p
� expð�mxÞ

h i
þ i

ffiffiffiffiffiffi
bP

p
expð�bxÞ erfcði

ffiffiffiffiffiffiffiffiffi
bPx

p
Þ � erfcði

ffiffiffiffiffiffi
bx

p
Þ

h i

In the non-magnetic case, the skin friction can be obtained using

Eq. (12). In this case we obtain

�ðtÞ ¼ að
ffiffiffiffi
P

p
� 1Þtþ 2

ffiffiffiffiffiffiffi
t=	

p
ð16Þ

4. NUMERICAL RESULTS

Our aim in this work has been to obtain an analytical solution for the

hydromagnetic boundary layer flow of an incompressible fluid when

the flow takes place due to the accelerated motion of a vertical plate

subject to uniform heat flux. The solution is applicable to the cases

of the external magnetic field applied fixed relative to the fluid or to

the plate. The exact solution thus obtained has been used in this sec-

tion to investigate numerically the influence of the external forces.

We have computed the fluid velocity given by Eq. (11) for two sample

liquids: mercury and water, whose Prandtl numbers at 20�C have been

taken to be 0.044 and 7.0, respectively. As mentioned in the previous

section, the velocity of mercury for which P is less than unity has been

evaluated using Eqs. (11) and (14).
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In Fig. 1 we have shown the variation of velocity of mercury in

the boundary layer for some values of the magnetic and buoyancy

parameters, while Fig. 2 shows the velocity profiles of water for

another set of values. The curves correspond to the case of magnetic

field fixed relative to the boundary. From Figs. 1 and 2 we observe

two different kinds of fluid flow behaviour depending on the magni-

tude of the Grashof number G. For relatively small values of G, the

fluid velocity decreases steadily from the plate velocity to its zero

free-stream value. However, for higher values of G, the fluid velocity

overshoots the plate velocity in regions close to the boundary. This

overshooting is more pronounced for low Prandtl number fluids

than for higher Prandtl number fluids. This is evident from Fig. 1

for mercury in which a small increase in G has been shown to result

in a large increase in its velocity near the boundary, whereas in the

case of water (see Fig. 2), even a very large increase in G resulted in

only a relatively small overshooting of u near the boundary.

With regard to the relative influence of the magnetic field being

fixed relative to the fluid or to the plate, although not shown in the

figures, it was found that they had opposite effects on the fluid flow

in the boundary layer. In general, the fluid velocity was seen to

decrease with increase in magnetic field strength when it was applied

FIGURE 1 Velocity u of mercury (P¼ 0.044, m¼ 0.1, K¼ 1).
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fixed relative to the fluid, and the opposite effect was observed when

the magnetic field was fixed relative to the plate. The qualitative

change in the velocity profiles is a consequence of the force exerted

by the magnetic field on the fluid. This feature was seen to be valid

for different values of G and t. However, within the scales chosen

and for the specific parameter values considered, the values of u dif-

fered only by small amounts for the K¼ 0 and K¼ 1 cases; therefore,

the curves could not be shown distinctly in the figures.

The influence of the magnetic and buoyancy parameters on the skin

friction � under different temporal domains has been shown in Table I.

For illustrative purposes, we have shown the skin friction for water

only. As in the case of velocity, the magnetic field has opposite effects

on the skin friction depending on the mode of application. � increases

or decreases with m according as the magnetic field is applied fixed

relative to the fluid or to the boundary, respectively. For a fixed m,

the skin friction has a larger value when K¼ 0 than when K¼ 1, indi-

cating an increased rate of shear at the boundary wall in the former

case due to the interaction between the magnetic and viscous forces.

The skin friction decreases with the Grashof number G for all other

FIGURE 2 Velocity u of water (P¼ 7.0, m¼ 0.1, K¼ 1).
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parameter values. The temporal variation of � was seen to be not

monotonic; to a large extent it is influenced by the magnitude of G.
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TABLE I Skin friction � of water (P¼ 7.0)

G t m �

K¼ 0 K¼ 1

0.5 0.1 0.1 0.3535 0.3511
1.0 0.3641 0.3408

0.3 0.1 0.6108 0.5985
1.0 0.6649 0.5483

5.0 0.1 0.1 0.3131 0.3107
1.0 0.3240 0.3007

0.3 0.1 0.4897 0.4774
1.0 0.5464 0.4297

20.0 0.1 0.1 0.1784 0.1761
1.0 0.1903 0.1670

0.3 0.1 0.0863 0.0740
1.0 0.1513 0.0346
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